PyMethylProcess
convenient high-throughput preprocessing workflow for DNA methylation data
https://github.com/Christensen-Lab-Dartmouth/PyMethylProcess
Wiki: https://github.com/Christensen-Lab-Dartmouth/PyMethylProcess/wiki
Help documentation: https://christensen-lab-dartmouth.github.io/PyMethylProcess/
Alternatively, you can access the pdf: PyMethylProcess.pdf
What is it:
- Preprocess 450k and 850k methylation IDAT files in parallel using Minfi, ENmix, and meffil
- Convenient and scalable implementation
- Imputation and Feature Selection
- Preparation for machine learning pipelines
Why:
- Make DNAm accessible to python developers and more machine learning oriented researchers
- Streamlined analysis makes processing easy
PyMethyProcess is now available in Bioinformatics: https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btz594/5542385 .