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● Dataset Preprocessing & Construction
○ Histology: Extract single cell H&E histology bounding boxes using registered 

segmentation masks from Xenium output
○ Gene Expression: Patch-level vector aggregation for spatially variable gene 

(SVG) determination. Vector normalization and log transformation 

● Feature Extraction & Base Modeling Approaches
○ Convolutional Neural Network: 4 layer convolutional neural network 

approach, followed by 2 dense fully-connected layers. Intermediate dense layer 
size 128 as latent representation for future graph representations

○ Fine-Tuned ResNet50: Transfer learning from pre-trained ResNet50 on 
ImageNet fine-tuned to cell dataset and task. Additionally experiment with 
resizing input to 224x224. Modified model head to predict 10 length vector with 
intermediate dense layer size 128 for latent representation

○ Autoencoder: Specialized model for latent representation extraction with key 
morphological features to reconstruct cell histology

● Graph Modeling Approaches
○ Graph Dataset: Construct patch-level geometric objects with latent 

representation embeddings from CNN, ResNet50, and AE, targets as SVGs, 
and edges constructed via k-nearest neighbors algorithm (k=10)

○ Graph Convolutional Models: Employ message passing layers to train three 
graph convolutional network architectures aware of spatial context using distinct 
graph datasets with various embedding methods

● Evaluation
○ Quantitative: Calculate Spearman Correlation Coefficient for all model 

architectures
○ Qualitative: Observe relationship between predicted and truth gene activity
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RESULTS

Figure 2. Original v.s. Reconstructed Cells via Autoencoder
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Figure 3. Ground Truth v.s. Predicted Gene Activity (via Autoencoder-Embedded Graph 
Convolutional Network) for best predicted gene: SFRP4

Figure 1. Methodology Workflow for Gene Expression Prediction: A) 
dataset preprocessing and construction; B) modeling approaches

● Key Findings & Impact
○ Despite the limited dataset leveraged in this study, deep learning demonstrates 

promise in single-cell gene expression inference
○ The superior performance of the autoencoder-embedded GNN model, with a 

Spearman Correlation Coefficient of approximately 0.163, in comparison to a 
standard Convolutional Neural Network limited to localized cellular information, 
suggests that meaningful insights can be derived by incorporating relatively 
global structural information 

○ We anticipate that scaling the developed solution will provide more robust 
genomics predictions and work towards more accessible, enhanced clinical and 
research outcomes.

● Limitations
○ Registered data only available for one patient, lack of training diversity and 

scale; lack of external assessment cohort
○ Potential semi-dependency between training, validation, and testing sets 

deriving from same patient
● Future Directions

○ Scaling current model architectures to larger and more diverse datasets for 
most robust predictions and attempting to predict larger portion of gene profile

○ Refining modeling approaches: experimenting with different latent sizes, 
multi-scale node embedding approaches, cross modal contrastive 
autoencoder-based encoding methods

○ Developing YOLO model to complete pipeline from H&E WSI to Xenium ST 
● Data and Code Availability 

○ Data openly sourced from 10x Genomics platform
○ Code privately at: https://github.com/ashankshah/xenium_inference
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● Single cell spatial transcriptomics (ST), facilitates enhanced clinical and 
research outcomes, but access is limited and costly

● H&E histology is an accessible data format that clearly delineates morphological 
features in tissue

● We explore machine-learning based methods with standard and graph networks to 
infer single cell gene expression from H&E histology

● We find that graph approaches that encapsulate spatially contextual information 
enhance ST inference  

● Urge further research scaling the developed approaches to more diverse and 
larger datasets for more robust results

● H&E staining is an extremely common tissue staining practice that clearly 
distinguishes nucleic and cytoplasmic boundaries in the tissue which is often 
sufficient for unimodal diagnoses

● However, for complex tasks including biomarker identification, tumor 
microenvironment studies, and complex diagnoses/prognoses, spatially localized 
gene expression data, or spatial transcriptomics data, is an informative 
alternative
○ ST data remains inaccessible due to costs ($3600 per slide) and often 

required specialized expertise in operation
● Prior literature has demonstrated utility of deep-learning approaches in 

untraditional derivation of gene expression data from histology on spot level 
granularity (e.g. Visium prediction)
○ Single-cell granularity spatial transcriptomics, such as Xenium generation, 

remains largely unexplored
● Graph neural networks are a modeling approach that leverage message passing 

layers to incorporate contextual information to make more informed predictions
○ Have demonstrated utility in cell graphs for more informed diagnoses and 

potential in gene expression inference
● We propose a computational pipeline for single cell Xenium gene expression 

vector prediction (specifically prediction of spatially-variable genes) that 
experiments with both localized and relatively global-based prediction approaches 


