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Urothelial carcinoma such as Bladder Cancer is the 5th most common 
non-cutaneous cancer in the U.S., with a 31% recurrence rate.
Current cytology is cost-effective but suffers from:

●Labor-Intensive: Time-consuming and error-prone.
●Screening Bias: Variability and missed patterns.
●Limited Scalability: Struggles with high test volumes.

Automating cytology could improve efficiency, accuracy, and consistency while 
reducing costs and detecting subtle patterns.

AutoParis-X
● Software application with several deep learning models to analyze urine 

cytology
● Extracts cell and cluster-level features including NC 
    ratio, atypia score, and morphological measures 
● Does not rank relative malignancy of cells

Current Approaches

● RankNet, introduced by Burges et al. in 2005, employs neural networks to 
learn a ranking function by comparing pairs of examples, which can result in 
computational inefficiency, particularly when working with large datasets.

● Sanghvi et al. developed a semi-autonomous diagnostic decision aid for 
bladder cancer using deep learning to rank cells based on their likelihood of 
malignancy, but it faces challenges such as reliance on high-quality labeled 
data and limited interpretability of the model's predictions.

● Butke et al. proposed an end-to-end multiple instance learning approach for 
whole-slide cytopathology of urothelial carcinoma, which learns to rank 
regions of interest within a slide. However, this approach faces challenges 
such as increased complexity in model training and potential issues with false 
positives or negatives.

Urothelial carcinoma's (UC) heterogeneity complicates diagnosis and treatment.
Used AutoParis-X features, including cell morphology and deep-learning features.
Multiple-instance learning  was applied with slides as bags and cells as instances.
An attention mechanism ranked cells by malignancy relevance.
Results for the Attention Model: 79% accuracy, 0.76 AUROC.Results for the 
Baseline Model: 67% accuracy, 0.66 AUROC.
The Attention Model outperformed the Baseline Model, showing promise for 
improving UC diagnostics.

Data Collection
● Slide Acquisition: Dataset of cytology slides from DH
● Cell Extraction: AutoParis-X extracted features

○ Morphological features (e.g., cell shape, size, nuclear morphology).
○ Deep learning-extracted features (e.g., atypia score, NC ratio)
○ Limited to 3000 cells per slide

RESULTS

What is Multiple Instance Learning (MIL)?

MIL is a machine learning approach where only bag-level labels are known, 
not individual instances within the bags.

Why is MIL Useful?

1. Handles Incomplete Labeling: Useful for datasets with only overall 
labels, such as medical images where individual labels are impractical.

2. Identifies Relevant Instances: Focuses on important regions within bags, 
improving detection accuracy, like spotting malignancy in pathology slides.

Feature Selection
● Features were selected based on Pearson correlation and 

literature review
● Features involving NC ratio and cytoplasmic area showed 

greater correlation with slide malignancy classification
● Features that shared high correlations had only one feature 

selected for dimensionality reduction
Multiple Instance Learning (MIL) Framework
● Bags: Cytology slides
● Instances: Urothelial cells

○ Malignant slides: Have at least one malignant cell
○ Benign slides: Have no malignant cells

Figure 1: Slide-level Attention Framework

Figure 2: Loss Graph                                Figure 3: Confusion Matrix

Table 1:Ablation Study Results

Accuracy AUROC F1

Attention 
Model

0.79 0.76 0.36

Baseline 
Model

0.67 0.66 0.63

Model Evaluation

Challenge: No predetermined rankings of cells on the slide.
Solution: Our model ranks cells without supervised guidance.
Evaluation:
● Accuracy: Measures how well the model's ranking matches the slide's classification.
● AUROC: Assesses the model's ability to distinguish between different classes.
● F1 Score: Evaluates the balance between precision and recall in the ranking.
Objective: Validate the model's effectiveness by comparing its rankings to the known 
slide classifications.

Model Performance and Loss Analysis

● Training loss decreased and stabilized, showing effective learning.
● Validation loss had initial variability but eventually converged, 

suggesting good generalization.
● Model with attention outperformed baseline model in accuracy and 

AUROC

● Loss graph indicates some instance of overfitting due to stagnation after 

50 epochs

Confusion Matrix Insights

● Model shows sensitivity to overlapping features between benign and 
malignant cells.

● Confusion matrix results indicates the model’s main classification 

weakness lies in the false positives category

Ablation Study Results

● Attention model performed better than baseline in accuracy and 
AUROC.

● Lower F1 score reflects a trade-off between precision and recall.

● Reduce number of false positives by determining a higher threshold 
● Develop saliency map to understand which regions of cells are more 

responsible for slide classifications
● Experiment with different learning weights and a weight scheduler
● Integrate project into web app

FUTURE WORK 

Enhanced Diagnostic Accuracy
● The integration of the attention mechanism within our multiple instance learning 

framework substantially improved the model's diagnostic accuracy and AUROC.
● The attention mechanism effectively highlighted the most relevant cells, refining 

the model's ability to distinguish between benign and malignant urothelial cells.

Precise Cell Ranking

● The model's capacity to dynamically rank cells based on their malignancy is a 
significant advancement, offering a more nuanced evaluation compared to 
traditional methods.

● This approach enables more targeted and accurate assessments, contributing to 
better diagnostic and treatment strategies for urothelial carcinoma.
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