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e DNA methylation influences cancer by decreasing methylation in oncogenes
and increasing it in tumor suppressor genes. Methylation Data Analysis

e This process is an epigenetic modification where methyl groups are added to . - .
e The DNA methylation sites were evaluated using beta values, which range Discussion & Conclusion

DNA, altering gene activity without changing the DNA sequence. from 0 to 1.

o Beta values near 0 indicate low levels of DNA methylation. Model Performance
o Beta values near 1 indicate high levels of DNA methylation.
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Diagnostic Potential of DNA Methylation:
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RESULTS RESULTS Future Directions

e Future studies should aim to reduce overfitting by using fewer methylation sites or
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*KNN = K-Nearest Neighbors False Positive Rate

*Stacking Ensemble = (SVM + Random Forest + Logistic Regression)



